128=(x^2)/(x+5)

Simple and best practice solution for 128=(x^2)/(x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 128=(x^2)/(x+5) equation:



128=(x^2)/(x+5)
We move all terms to the left:
128-((x^2)/(x+5))=0
Domain of the equation: (x+5))!=0
x∈R
We multiply all the terms by the denominator
-(x^2+128*(x+5))=0
We calculate terms in parentheses: -(x^2+128*(x+5)), so:
x^2+128*(x+5)
We multiply parentheses
x^2+128x+640
Back to the equation:
-(x^2+128x+640)
We get rid of parentheses
-x^2-128x-640=0
We add all the numbers together, and all the variables
-1x^2-128x-640=0
a = -1; b = -128; c = -640;
Δ = b2-4ac
Δ = -1282-4·(-1)·(-640)
Δ = 13824
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{13824}=\sqrt{2304*6}=\sqrt{2304}*\sqrt{6}=48\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-128)-48\sqrt{6}}{2*-1}=\frac{128-48\sqrt{6}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-128)+48\sqrt{6}}{2*-1}=\frac{128+48\sqrt{6}}{-2} $

See similar equations:

| 1.4z-0.5=3,7 | | 4096x=819000 | | 4^x+2^1+2x=50 | | 3x+4•2x=24 | | x+1/5=10 | | 2/9x+2/3=7 | | (2x+1)^2=3x^2+6 | | 3x+4.2x=24 | | 2x+2x+2x+2x=180 | | x/8-4=3 | | -6=10-2k | | 3x^2+10+10x=-13x+46 | | 4(6-3x)=22-3(5x+19) | | 4f^2=+12f | | 2r+4rr=7 | | -3.4r+19-2.3r=1+8r | | e=3*6^2 | | x.5+3x.2=17 | | 6t+4+t=14-3t | | 100x-x=0.34343434 | | 4x-1.2x=7 | | 4(3+x)=3643+x=36 | | 4w+6=10w-8 | | 2x+2x+20+x+3x+20=180 | | x/21/8=2/7 | | x/25/8=2/7 | | -9=-3x15 | | -9=-3x=15 | | x÷25/8=2/7 | | -10=5x-5=15 | | x*2/3=360 | | 5x+10=10x-35 |

Equations solver categories